当代教育与艺术
  • ISSN:3079-9031(Print) 3080-1516 (Online)
  • DOI:10.64216/3080-1516.25.02.064
  • 出版频率:月刊
  • 语言:中文
  • 收录数据库:ISSN:https://portal.issn.org/ 中国知网:https://scholar.cnki.net/journal/search

基于Transformer-CNN的多模态融合模型在工业轴承故障预测中的应用研究
杨涛1 王海程2 赵帅业2(通讯作者) 李国新2 纵绚3

1滨州市科技创新发展研究院,山东滨州,256600;

2滨州职业学院,山东滨州,256600;

3浙江交通职业技术学院,浙江杭州,311112;

摘要:针对工业轴承故障预测中的数据融合难、边缘推理慢及仿真与工况脱节问题,提出了MT-CNN多模态注意力模型与HILPM仿真系统。MT-CNN通过多模态输入与多分支网络提取特征,结合物理引导的注意力机制实现故障分类与RUL预测;HILPM系统以PLC为核心构建边缘-云端协同架构,集成硬件加速与闭环验证平台,实现虚实结合的故障仿真与实时推理。实验显示,MT-CNN在CWRU数据集上分类准确率达98.67%,RUL预测RMSE为8.32,以2.23M参数实现3.9ms推理延迟,显著优于现有模型;工业验证中系统故障识别率达97.2%,误报率0.32%,满足工业实时可靠性要求。

关键词:滚动轴承;故障诊断;跨模态注意力;边缘计算

参考文献

[1]王川,杜文莉,朱佳雯,等.数智赋能流程工业调度决策优化:综述与展望[J].中国科学:信息科学,2025,55(07):1571-1598.

[2]Rehman U A ,Jiao W ,Jiang Y , et al.Deep learning in industrial machinery: A critical review of bearing fault classification methods[J].Applied Soft Computing,2025,171112785-112785.

[3]Alberto J ,Jose-Raul R ,Javier G .MachNet, a general Deep Learning architecture for Predictive Maintenance within the industry 4.0 paradigm[J].Engineering Applications of Artificial Intelligence,2024,127(PB).

[4]Cheng Z ,Wu Y ,Li Y , et al.A Comprehensive Review of Explainable Artificial Intelligence (XAI) in Computer Vision[J].Sensors,2025,25(13):4166-4166.

[5]刘明,陈辉.基于卷积神经网络的机械设备故障诊断[J]. 机械工程学报,2023,59(6):123-131.

[6]高翔,王磊.基于 LSTM 的旋转机械故障预测模型[J].仪器仪表学报,2021,42(3):456-465.

[7]Cabeza F L ,Verez D ,Teixidó M .Hardware-in-the-Loop Techniques for Complex Systems Analysis: Bibliometric Analysis of Available Literature[J].Applied Sciences,2023,13(14).

[8]J. Yao et al., "Edge-Cloud Polarization and Collaboration: A Comprehensive Survey for AI," in IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 7, 1 July 2023,pp:6866-6886.

上一篇:人工智能在供应链风险管理中的应用与价值评估

下一篇:智慧课堂师生互动水平的困境审视与优化路径研究