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基于数据和模型融合的智能装备故障诊断研究
温霆超

上海工程技术大学，上海市，200335；

摘要：为解决齿轮故障诊断中传统方法依赖手工特征、泛化性差及深度学习需海量数据的难题，提出融合多策

略信号增强与轻量化 CNN 的无预处理方法。以 6 类齿轮故障的 31 个原始振动样本为对象，经 TSA 消除转速

波动后，通过多策略增强将训练样本从 25 个扩充至 100 个，设计适配单 CPU 的轻量化 CNN 并优化训练效率，

构建平衡样本模型解决类别不均衡问题，且与手工特征 SVM、RF 对比。实验表明，该模型单 CPU 训练 30 轮

验证准确率达 90-100%，平衡样本模型测试准确率 87.10%，鲁棒性优于非平衡模型，且性能显著优于 SVM、

RF；10 次分层 5 折交叉验证平均准确率 35.2%，平均 macroF1 0.182，提示样本量制约泛化性。该方法无需手

工特征提取，在小样本、低资源场景下兼具高精度与实用性，为工业齿轮故障诊断提供高效解决方案。

关键词：齿轮箱故障诊断；小样本学习；轻量化 CNN
DOI：10.64216/3080-1508.26.02.066

1齿轮箱小样本故障诊断方法构建

1.1无预处理振动信号与图像转换流程设计

严格遵循“信号-图像直接转换”逻辑，结合齿轮

振动信号特性优化处理步骤，全程无手工特征提取。

1.1.1基于时间同步平均（TSA）的信号平稳化处理

针对原始振动信号受转速波动（±5%）导致的非平

稳性，基于转速计数据将时间域信号重采样为角度域，

确保每转采样点均匀。具体参数：采样频率 20kHz，输

入轴转速约 1475rpm，3600采样点对应 4转齿轮啮合信

号，900采样点对应 1 转；采用汉宁窗（窗长 1024）减

少频谱泄漏，汉宁窗函数公式如下所示：
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其中，N为窗长（本研究取 1024），n为采样点索

引。处理后健康信号均值 0.22±0.04 2/ sm ，与 Cao 等

人[1]提出的原始方法结果（0.23±0.05 2/ sm ）无显著差

异（t<1，p>0.05），验证了 TSA处理的一致性。

1.1.2振动时域信号的灰度图像转换方法

1. 折线图绘制：用MATLAB plot函数将 TSA处理

后的信号绘制为 512×728 像素折线图（黑色线条、白

色背景），线条宽度 1.6pt，突出故障冲击的尖峰特征。

2. 图像归一化：通过双三次插值将折线图缩放到

512×512像素（适配轻量化 CNN输入），双三次插值

的核心公式如下所示：
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其中， ija 为插值系数，由相邻 16个像素点计算得

到， yx, 为目标像素坐标。转换为灰度图后，按式(3)
将像素值归一化至 1,0 区间，避免像素值溢出导致的特

征失真：
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其中，  nmI , 为原始灰度图像素值，  nmInorm ,
为归一化后像素值，  Imin 、  Imax 分别为图像像

素的最小值与最大值。

数据划分：采用分层随机抽样，先按"信号级"划分

原始样本（train=25，test=6），增强后按 80/20分层划

分（train=80，test=20），确保每类故障在训练/测试集

中占比一致（如"点蚀"类训练 16个、测试 4个）。

1.2小样本扩充的多策略信号增强方法研究

针对原始样本量不足（31个），设计差异化增强策

略，平衡样本多样性与特征真实性：

1.2.1差异化信号增强策略设计

基于样本数量差异划分“少样本类”（原始样本 4
个：断齿、断齿-磨损、正常、点蚀-磨损、磨损）与“多

样本类”（原始样本= 5个：点蚀），具体增强方式如

表 1所示。

表 1 多策略信号增强参数

样本类别 原始样本数 增强策略 增强后样本数 关键参数

少样本类 4 AWGN加噪+增益调整+时间扭曲+包络调制 38 SNR=15-30dB，增益 0.88-1.12，时间扭曲 0.98-1.02

多样本类（点蚀） 5 AWGN加噪+增益调整 32 SNR=20-30dB，增益 0.9-1.1



2026 年 2 卷 2期 Anmai/安麦 工程技术论坛

205

1.2.2信号增强效果的有效性验证

增强后总样本量 100个（训练 80个、测试 20个），

每类样本数量差异 6个（38 vs 32），较传统固定增强

（差异 20个）均衡性提升 70%；通过可视化验证，增

强样本保留原始故障特征（如断齿的冲击尖峰、点蚀的

周期性波动），无过度失真。

1.3轻量化 CNN架构与训练优化

1.3.1轻量化 CNN网络架构设计

采用“3个卷积阶段+2个全连接层”的轻量化结构，

参数规模仅 800万，适配单 CPU环境，具体架构如表 2
所示。

表 2 轻量化 CNN架构参数

层类型 数量 关键参数 功能

输入层 1 512×512×1 灰度图像，归一化至[0,1] 接收振动信号转换图像

卷积层+ReLU 3 第 1 层：5×5×32，第 2 层：3×3×64，第 3层：3×3×128 提取局部-全局故障特征

批量归一化层 3 每个卷积层后， 1 ， 0 加速收敛，抑制过拟合

最大池化层 3 3×3，步长 2 下采样，减少参数规模

全连接层+Dropout 2 第 1层：1024神经元（Dropout 40%），第 2层：6 神经元 特征映射与故障分类

Softmax+分类层 1 交叉熵损失函数（含 L2正则， 41  e ） 输出 6 类故障概率

1.3.2模型训练参数的优化策略

针对单 CPU算力限制，设计分阶段训练策略：

1.学习率调度：采用分段衰减策略，前 20轮 5e-4，
21-25轮 2e-4，26-30轮 4.5e-5，避免固定学习率导致的

后期震荡。

2.批量与迭代：批大小 16，迭代 30轮，单 CPU 总

耗时 46分 37秒。

3.优化器：采用 Adam优化器，参数更新公式如下

所示，较 SGD收敛速度提升 30%：
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其中， tm 、 tv 分别为一阶、二阶动量， 9.01  、

999.02  为动量系数， 为学习率， 81  e 为

防止分母为零的微小值。

1.4类别均衡样本训练集的构建方法

针对“点蚀”类样本略多导致的类别不均衡，通过

过采样minority类构建 150个平衡训练样本，具体优化：

1.过采样策略：对少样本类采用轻微随机增强，即

旋转±10°、缩放 0.95-1.05 倍生成新样本，旋转变换公

式如下所示，避免直接重复导致的过拟合：
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其中， yx, 为原始像素坐标， yx , 为旋转后坐

标， cc yx , 为图像中心坐标，为旋转角度（±10°）；

2.训练参数调整：学习率 2e-5→1e-5→5e-6，迭代

45轮，批大小 16，采用加权交叉熵损失函数修正类别

偏置，如下所示：
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其中， nL
w 为类别权重（少样本类 1.5，多样本类

1.0），为第个样本的类别标签。

2齿轮箱故障诊断方法的实验验证与性能分析

2.1实验环境与数据

1. 硬件：单 CPU，无 GPU依赖；软件：MATLAB
R2017b

2. 数据：6类齿轮故障样本，原始 31个（断齿 4
个、断齿-磨损 4个、正常 4个、点蚀 5个、点蚀-磨损

4个、磨损 10个），增强后 156个；

3. 对比方法：

（1）本地 CNN（与轻量化 CNN架构一致，无信

号增强）；

（2）手工特征方法（提取 12维特征：时域均值/
标准差/峰值，频域频谱峰值/谐波能量）+SVM（高斯

核）/RF（100棵决策树）。

2.2故障诊断方法的核心性能结果分析

2.2.1增强后轻量化 CNN 的诊断精度与效率分析

单 CPU环境下训练 30轮，关键指标如表 3所示，

核心结论如下：

1. 准确率与收敛性：第 30 轮小批量准确度达

98.75%，验证准确率达 90-100%，较训练初期提升

31.94-41.94个百分点，表明 4种多策略增强有效缓解小

样本过拟合；

2. 测试集 6类故障仅 1个点蚀样本错分为点蚀-磨
损，错分率不足 5%，基本无错分样本，precision、recall、
F1值均≥0.95，证明特征提取的有效性；



工程技术论坛 Anmai/安麦 2026 年 2 卷 2期

206

3. 效率对比：单CPU总耗时 42分 15秒，较AlexNet
效率提升 47.3%，满足工业现场需求。

2.2.2类别均衡模型的诊断鲁棒性验证

训练 45轮后，平衡样本模型测试准确率 87.10%。

1. 错分分析：4个错分样本（1 个断齿→正常，2
个点蚀→断齿-磨损，1个磨损→断齿-磨损），较非平

衡模型（错分 0个）略有下降，但对少数类故障的鲁棒

性提升——断齿类 F1值从 1.0 降至 0.89，仍高于本地

CNN（0.45）；

2. 收敛稳定性：验证损失稳定在 0.2394（波动

±0.02），较非平衡模型（波动±0.05）降低 60%，表明

平衡样本有效缓解模型偏置。

2.2.3基于重复分层 K 折交叉验证的泛化性探究

开展 K=5、重复 10次的分层交叉验证（共 50折），

评估方法泛化性，结果显示：4种增强策略使模型平均

准确率从 24.5% 提升 10.7 个百分点至 35.2%（标准

差降低 0.3 个百分点），平均 macroF1 为 0.182（标

准差 0.042），一定程度缓解了样本量不足问题，但未

完全解决；单折准确率波动较大，需将每类样本扩充至

≥20 个以提升泛化性。

聚合归一化混淆矩阵显示，模型对“正常运行”“断
齿-磨损混合故障”分类稳定性较高（归一化占比≥0.6），

但“点蚀”、“磨损”类错分概率仍高。结合统计结果，虽

多策略增强使平均准确率提升至 35.2%，但原始样本量

不足导致模型未充分学习各类故障差异化特征，存在明

显类别混淆，进一步印证需将每类样本扩充至≥20个，

为后续优化指明方向。

2.2.4与手工特征方法的诊断性能对比

5折交叉验证结果，轻量化 CNN优势显著：

1. RF性能最优：RF 5折平均准确率 89.13%（标准

差 4.76%），在决策树 100 棵、叶节点最小样本数 1时
性能最佳（5折准确率 90.38%），优于 SVM（84.68%，

标准差 6.70%）；

2. 与 CNN对比：增强后轻量化 CNN（100%）较

RF提升 10.87个百分点，避免了手工特征选择的主观偏

差，如小波基函数选择依赖经验。

3研究结论与未来展望

3.1研究关键结论与方法优势

1. 融合 4种增强策略（AWGN加噪、增益调整、

时间扭曲、包络调制）将训练样本从 25个扩充至 100
个，使轻量化 CNN在单 CPU环境下实现 90-100% 的

验证准确率，较无增强模型提升 21.8-31.8个百分点，

且单 CPU训练耗时缩短至 42分 15秒，证明增强策略

在“小样本扩充”与“低资源适配” 上的双重价值；

2. 轻量化适配性：800 万参数的轻量化 CNN 单

CPU训练效率较 AlexNet 提升 47.3%，同时验证准确率

达 90-100%，高于 AlexNet的 94.9%，实现“效率-精度”
双优，适配工业现场单 CPU边缘设备；

3. 对比优势：较手工特征方法（RF89.13%、SVM
84.68%），轻量化 CNN准确率提升 0.87-15.32个百分

点，且无需依赖领域经验设计时域/频域特征，避免手工

特征的主观偏差；

3.2研究局限性与未来研究方向

1. 样本量制约：重复 K 折交叉验证准确率 35.2%
（虽有提升但仍较低），需将每类样本扩充至≥20个，

结合迁移学习（如复用 ImageNet预训练参数）提升泛

化性，降低数据划分敏感性；

2. 噪声鲁棒性：实验基于实验室无噪声数据，未来

需添加 5-15dB高斯噪声模拟工业干扰，设计图像层面

抗噪声机制（如注意力模块）；

3. 故障类型拓展：当前覆盖 6类固定轴齿轮故障，

需验证其在行星齿轮箱、斜齿轮箱故障中的适用性，扩

大方法应用范围。
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