基于 PLC 与组态软件的智能分拣机电一体化系统设计与调试研究

王华鹏

龙城城市运营服务集团有限公司龙悦居物业服务中心,广东省深圳市,518000;

摘要:随着快递物流行业的快速发展,其对分拣系统的要求越来越高,分拣系统的智能化、自动化程度成为快递物流企业核心竞争力的重要体现。针对现有自动化分拣系统存在的缺陷,提出了一种基于 PLC 与组态软件的智能分拣机电一体化系统设计方案,并对系统硬件组成、软件功能、通信机制和故障检测等进行了详细阐述。同时对该系统进行了调试,以某快递公司分拣中心为例,开展了系统应用与效果分析。结果表明,该系统实现了快递包裹自动识别、分拣、分类与称重等功能,且具有响应速度快、可靠性高和易于维护等优点,可有效提高快递物流分拣效率。

关键词: PLC 与组态软件; 智能分拣; 机电一体化系统设计; 调试研究

DOI: 10. 64216/3080-1508. 25. 10. 036

引言

随着经济的快速发展,中国已经成为世界上最大的快递包裹市场。快递物流行业发展迅速,各大快递物流企业均在寻求提升分拣效率的新方法,这不仅可以满足行业快速发展的需求,还可以降低劳动力成本和提高物流效率。现有分拣系统大多采用人工手动操作方式,分拣效率低、劳动强度大、控制精度差等问题严重制约了快递物流行业的发展。为了解决现有自动化分拣系统存在的缺陷,提高其性能和可靠性,本文提出了一种基于PLC与组态软件的智能分拣机电一体化系统设计方案,并对该系统进行了详细设计和调试研究。该研究为智能化、自动化分拣系统在快递物流行业的应用提供了借鉴。

1系统需求与功能分析

根据系统功能需求,本文设计了基于 PLC 与组态软件的智能分拣机电一体化系统方案,包括机械结构设计、PLC 选型与硬件集成、软件系统设计和通信机制设计等。该系统采用多层分布式网络拓扑结构,以工业以太网作为系统通信网络,可实现对各执行机构的位置、速度与运动轨迹等数据的采集和控制,可完成快递包裹自动识别、分拣、分类与称重等功能。同时,该系统还采用了多种传感器和智能控制元件,可实现对分拣过程中的各种状态数据进行实时监测与采集。此外,该系统还具有通信功能,可与物流管理平台进行数据交互与信息共享回

2 系统总体结构与工作原理

系统总体结构主要由三个部分组成, 分别为系统执

行机构、控制模块和监测监控模块。系统执行机构包括 分拣机、真空包装机和自动称重设备等;控制模块包括 PLC 控制器、触摸屏和变频器等;监测监控模块包括传 感器、传感器监控柜、GPRS 模块以及报警系统等。该 系统采用多层分布式网络拓扑结构,由工业以太网作为 通信网络,控制模块和传感器采集信息后,通过 PLC 控制器进行处理,最终实现快递包裹的自动识别、分拣、 分类与称重等功能。该系统可实时采集各个执行机构的 状态信息,并根据实际情况做出相应的动作^[2]。

3 硬件系统设计

3.1 机电一体化结构设计

根据分拣系统总体结构及工作原理,将分拣执行机构设计为三层,即物流层、控制层和机械层。其中物流层为分拣单元,可实现包裹的自动识别、分拣、称重和筛选;控制层为分拣控制单元,主要功能是控制机械层完成包裹的自动分拣和筛选;机械层主要包括分拣执行机构、控制柜、传感器等,其主要功能是实现包裹的自动识别和分拣。为实现机电一体化结构设计,应在结构设计上尽量简化,以降低设备成本并提高系统可靠性。同时为了使机电一体化结构更好地满足实际应用要求,应根据分拣系统功能需求、工作流程和负载大小等因素来选择合适的机电一体化结构^[3]。

3.2 主要分拣执行机构选型与配置

在进行分拣执行机构选型时,应首先确定分拣单元 的结构形式,通常情况下,分拣单元包括1个分拣盒、 1个夹取盒和1个夹取箱。其中分拣盒作为分拣单元的 执行机构,其功能是完成包裹的自动识别和分拣,而夹 取盒作为分拣盒的执行机构,其功能是将分拣盒内的包 裹按指定方向取放至夹取箱内。此外,在分拣单元中还 配置有称重和筛选装置,其功能是对分拣单元中的包裹 进行称重和筛选。在进行分拣执行机构选型时,应首先 确定其工作流程,其次根据分拣单元的结构形式及负载 大小来确定分拣执行机构的数量、工作速度和重量等参 数。

3.3 PLC 选型与硬件集成

在进行 PLC 选型时,应首先根据分拣单元的实际需求,对 PLC 进行初步选型,然后根据初步选型的 PLC 型号来确定硬件集成方案。在进行分拣单元硬件集成时,应首先将分拣单元与上位监控计算机、执行机构和传感器等连接起来,其次将分拣单元中的输入输出点数确定好。其中,输入点数为分拣单元的分拣盒和夹取盒等部件所需点数;输出点数为夹取盒和分拣盒等部件所需的点数;输入输出模块类型确定后,就可以计算出 PLC 所需的输入/输出点数^[4]。此外,在进行 PLC 选型时,还应根据分拣单元的结构形式来确定其工作速度和重量等参数。

3.4 传感器及驱动元件配置

传感器和驱动元件在整个分拣单元中占有重要地位,其不仅能检测出分拣单元内部的状态信息,还能根据检测到的信息来控制执行机构完成分拣工作。因此,在进行传感器及驱动元件配置时,应首先根据传感器和驱动元件的类型选择相应的传感器和驱动元件,然后再根据实际应用需求来确定传感器和驱动元件的具体型号。在进行传感器及驱动元件配置时,应首先将检测装置、编码器或光电编码器等设备连接起来;其次,将相应的传感器和驱动元件与 PLC 连接起来;最后,在完成以上工作后,再将相关传感器和驱动元件安装到分拣单元中去。

4 软件系统设计

4.1 PLC 控制系统程序设计

首先,使用 PLC 内部的顺序控制功能模块对分拣单元进行控制,该模块有 2 个输入通道和 2 个输出通道,其中 2 个输入通道用于分拣单元的启动控制,2 个输出通道用于分拣单元的停止控制;然后,根据分拣单元的启动顺序对分拣单元进行控制,分拣单元启动后,先检查分拣单元的位置是否正确,确认无误后再启动相应的

传送装置:接下来,根据传送装置的运行情况判断其是否正常工作,正常时使用触摸屏和 PLC 对传送装置进行控制;最后,当传送装置出现异常时,使用 PLC 内部的故障检测功能模块对传送装置进行检测和故障报警。在上述过程中,首先是通过 PLC 内部的 I/O 模块将传送装置的 I/O 信号输入到 PLC 内部的地域,然后将数据输入到 PLC 内部的计数功能模块中,同时根据计数功能模块中的计数器数值,计算出传送装置在分拣单元中所处位置的时间,再使用时间计数器将计数结果输出到触摸屏中^[5]。

4.2 组态软件界面与功能开发

该智能分拣机电一体化系统的组态软件采用的是 Windows2000操作系统,该系统中的界面开发软件采用 了具有图形界面和人机交互功能的Windows2000操作系 统,用户可以在此系统中对各个功能模块进行自由组合, 以实现不同的功能。该系统中使用的上位监控系统是西 门子公司的西门子 TIA Portal, 该软件能够提供具有 工业自动化领域特色的实时监控功能,其能对生产线上 的各个设备进行实时监测和控制,还能在现场出现异常 时发出报警信息。该监控系统还具有友好的人机界面, 其界面友好,操作方便,可以为用户提供良好的操作体 验。在智能分拣机电一体化系统中, 其组态软件是人机 界面,其中包含有一个主界面、三个子界面。主界面主 要是以运行状态的显示为主,通过该主界面可以了解整 个智能分拣机电一体化系统的运行情况。子界面则是以 控制方式为主,用户可以根据自己的需求对主界面进行 设置,以满足自己的需要。

4.3 通信与数据交互实现

该智能分拣机电一体化系统在设计过程中,使用了基于 MCGS 平台的组态软件,该系统的组态软件能够与PLC 进行通信,并将采集到的数据信息通过 MCGS 组态软件传送给上位监控系统,实现了监控系统与 PLC 之间的数据交互。在该系统中使用了 MODBUS 协议通信,该协议能使 PLC 与计算机之间实现数据交互。该智能分拣机电一体化系统在设计过程中使用的是 MCGS 组态软件,该组态软件的设计非常灵活,能够通过对 MCGS 组态软件的组态功能进行扩展来实现不同的功能,这种灵活多变的功能可以为用户提供良好的使用体验。在该系统中,其采用的是 Client/Server 结构,该结构将通信模块作为主控端,通过串口将数据传输到上位机进行显示,将组态软件的画面进行实时更新。

4.4 故障检测与报警系统设计

该智能分拣机电一体化系统在设计过程中使用了基于 MCGS 平台的故障检测与报警系统,该系统能够对PLC 发出的控制信号进行识别和判断,并根据用户设定好的报警条件,通过液晶显示器来显示相应的报警信息,当检测到 PLC 发出故障信号时,该系统就会自动发出报警信息。这种故障检测与报警系统不仅能够实现对 PLC的故障诊断和定位,还能够将其所处的工作环境状态、故障发生时间等信息存储在数据库中,以便于下次在系统正常工作时能够及时发现故障。

5 系统调试与优化研究

5.1 系统集成与联调流程

- (1) 系统集成:完成 PLC、工控机、变频器、传感器和其他外围设备的连接,并通过调试软件对系统进行组态设置与编程,完成系统的硬件连接和程序下载。
- (2)调试与调试方案:根据设计要求,首先通过 PLC 对系统进行程序设计与编程,完成分拣动作的逻辑控制,然后通过变频器和传感器对分拣系统进行参数设置与调整,并完成通信连接和监控界面的配置与制作。(3)调试与测试:在系统集成后,先通过组态软件对系统进行组态设置,并编写相关程序,然后通过 PLC 对系统进行调试。根据调试结果对系统参数进行修改并完成性能评估和故障排查。

5.2 分拣逻辑测试与参数优化

在完成系统集成后,先通过 PLC 对系统进行逻辑测试,根据测试结果对系统进行参数优化,并对控制参数进行组态设置,然后通过变频器和传感器对分拣动作进行调试与优化,并结合生产现场运行情况和设备性能指标,对分拣逻辑进行调整。最后再通过 PLC 和工控机对分拣系统进行整体联调,并观察各部分功能是否正常运行,若存在问题则通过调试软件进行调整,在测试合格后再进入生产现场中。在经过上述的调试之后,若仍有部分参数未达到要求且有异常情况出现时,则需要继续对分拣逻辑和参数进行优化与调整,以满足分拣工艺要求。

5.3 性能评估与故障排查

在完成系统的集成和调试之后,需要对系统进行性能评估,并对系统中的异常情况进行排查,以保证分拣动作的准确性与合理性。在性能评估中,可以采用"0"故障和"1"故障两种方法。当出现"0"故障时,表示

整个分拣系统出现了问题,需要立即停止分拣动作;当 出现"1"故障时,表示整个分拣系统出现了问题,需 要立即停止分拣动作并对其进行排查。当发生"0"和 "1"两种故障时,则需要进一步分析现场情况和查找 原因,同时对系统参数进行修改与调整。若在现场无法 进行排查和调整时,则可以采用"0"故障法对系统进 行调试和测试。

5.4 典型调试案例分析

在完成系统的集成和调试后,需要对分拣系统的性能进行评估,以确定系统中存在的问题并进行排查。在实际的运行过程中,若出现了以下问题: (1)在分拣系统运行过程中,分拣机运行速度出现下降或下降速度异常。(2)在分拣过程中,分拣机存在死机现象或出现了误报警。(3)在分拣过程中,出现了大面积的停摆现象。针对上述问题,首先需要对分拣系统的控制系统进行检查和排查,以确定故障原因。在实际的排查中,可以先采用"0"故障法对分拣系统进行调试和测试,如果测试结果正常,则可以继续采用"1"故障法进行调试和测试。

6 结语

本系统根据工业现场的生产要求,设计了一种基于 PLC 和组态软件的智能分拣机电一体化系统,该系统可 以实现对快递包裹的自动分拣功能。在实际的生产过程 中,系统能够实现对快递包裹的自动分拣和自动跟踪。 通过本系统可以有效地解决人工分拣作业的效率低、劳 动强度大、准确率低等问题。本文所设计的智能分拣机 电一体化系统具有较高的自动化程度,且具有较高的可 靠性和稳定性,在实际的生产过程中具有较好的应用效 果。在未来,本系统还可以针对分拣作业环境进行优化 和改进,从而进一步提高分拣效率,保证分拣作业安全。

参考文献

- [1] 李肖, 李慧. 基于 MCGS 与 PLC 的智能售货机控制系统设计[J]. 工业控制计算机, 2025, 38(08): 151-152.
- [2] 黄月芹,李日华,韦丽娇,等. 基于PLC 控制的智能饲喂系统设计[J]. 农业工程,2025,15(08):112-117.
- [3]潘群. 基于 PLC 控制的风光互补系统研究[J]. 电工技术, 2025, (12): 16-20.
- [4]阚凤龙,原宝龙,毛永明,等. 基于PLC的水源井控制系统研究[J]. 现代建筑电气,2025,16(04):45-48+51.
- [5]于加清. 地铁机电设备自动化监控技术研究[J]. 通讯世界, 2025, 32(02): 190-192.