智能制造背景下高职食品类专业"两融合三对接"实训基地育人模式创新与实践

田其英 王静 孟秀梅 张兰

江苏食品药品职业技术学院, 江苏淮安, 223003;

摘要:高职院校实训基地是开展实践教学、产教融合、育人模式改革等的重要载体。在智能制造驱动产业升级背景下,高职食品类专业实训基地育人模式面临新的挑战。本文基于产教融合理论、协同育人理论和 OBE 教育理念,创建"两融合三对接"实训基地育人模式。通过"产教融合、工智融合"双轮驱动,实现"对接食品产业智能化升级需求、对接智能化职业岗位群能力要求、对接食品智能制造生产过程"的三维对接。实践表明,该模式显著提升了学生的专业技能、创新能力和就业竞争力,为高职院校实训基地建设提供了可复制的实施路径。

关键词: 智能制造; 高职教育; 实训基地; 产教融合; 工智融合; 实践育人

DOI: 10. 64216/3080-1516. 25. 02. 060

随着《"十四五"智能制造发展规划》的深入实施, 食品工业正加速向数字化、智能化转型。据统计 2022 年我国规模以上食品企业智能化改造投入同比增长23. 7%,智能检测设备、工业机器人、MES系统的应用率分 别达到 41.5%、28.3%和 35.6%[1]。这一变革对高职食品 类专业人才培养提出了全新要求, 传统实训基地育人模 式已难以适应产业发展需求。《职业教育产教融合赋能 提升行动实施方案》明确要求实训基地建设需与产业升 级同步规划; 江苏省"智改数转"三年行动计划将绿色 食品列为重点行业, 急需既懂传统工艺又掌握智能技术 的复合型人才;传统"单机操作"实训模式已无法满足 新修订专业"食品智能加工技术"的内涵要求。江苏食 品药品职业技术学院(以下简称学院)作为国家"双高 计划"食品智能加工技术专业群建设单位,拥有先进的 实训设施基础,在食品类专业建设和教学模式改革方面 经验丰富。学院与众多食品行业企业开展了多样化的合 作,能够为"两融合三对接"育人模式的实施提供有力 支持。此外,智能制造技术在食品行业的应用逐渐成熟, 相关技术标准和规范不断完善,可以为高职院校开展针 对性的人才培养模式改革提供指引。

1 "两融合三对接"实训基地育人模式创新的理论依据

1.1 产教融合理论的应用逻辑

马克思关于人类生产活动包括"生活资料生产"和 "人类自身生产"的论述为产教融合提供了哲学基础^[2]。 职业教育作为实现"人的全面发展"的重要途径,必须通过产教融合实现教育与产业的协同发展。《国家职业教育改革实施方案》《职业教育产教融合赋能提升行动实施方案》等文件,强调指出产教融合是职业教育高质量发展的核心路径。食品工业智能化转型,需要通过实训基地重构实现教育与产业同步发展,实训基地重构应着力解决三个关键问题: (1)教育内容滞后于产业技术发展; (2)实训条件与生产实际脱节; (3)人才培养规格与岗位需求错位。

1.2 协同育人理论的实施路径

协同育人理论强调通过校企、校政、校校多方协同, 共同参与人才培养过程,实现资源互补与优势叠加^[3]。 在智能制造背景下,食品行业人才需求呈现"技术复合型+创新实践型"特征,要求职业教育构建校企协同育 人机制,建立常态化沟通机制、政策保障机制及评价反 馈机制,确保育人效果。具体实施路径包括: (1)建 立校企共建共享机制; (2)开发模块化课程体系; (3)构建多元化评价系统。

1.3 OBE 教育理念的实施框架

OBE (成果导向教育) 理念是以学习成果为导向,通过"行业需求-能力目标-课程内容-评价体系"逆向设计课程体系^[4]。在食品智能制造人才培养中,OBE 理念的实施包括三个关键环节: (1) 基于岗位能力需求确定培养目标; (2) 设计模块化课程内容; (3) 建立持续改进机制。在专业人才培养实施过程中,要以学生

中心,设计个性化学习路径,通过课程设计、教学实施与评价反馈的闭环机制,确保能力目标的达成,从而推动从职业教育"知识本位"向"能力本位"转型。

2 传统实训基地育人模式的不足之处

2.1 实训条件滞后于技术发展

70%以上高职院校食品实训基地设备以单一功能、 手动操作为主,缺乏与智能制造相匹配的智能化设备, 如智能自动化生产线、物联网传感器、大数据分析系统 等。传统实训基地的场地规划多以满足基本教学需求为 主,实训场地通常被分为多个小区域,用于不同的实训 项目,缺乏系统性及真实生产场景。实训基地信息化建 设滞后,数据共享与分析能力不足。实训过程中产生的 数据无法有效收集、存储和分析,难以实现对实训过程 的实时监控和质量评估,难以满足食品智能制造人才培 养需求。

2.2 教学内容脱离产业实际

传统实训基地的教学内容往往以传统的食品加工工艺、质量检测方法等为主,教学内容更新缓慢。实训基地的教学内容多以单一学科知识为主,缺乏对食品加工、机械自动化、信息技术等多专业知识的融合。学生在实训过程中只能掌握某一领域的知识和技能,制约其技术应用和创新能力。实训基地的实践项目多以学校内部设计为主,偏重于理论知识的验证;缺乏与企业实际生产项目的对接,缺乏真实生产场景的沉浸式训练,学生难以掌握食品智能制造所需的复合型技能,就业竞争力下降[5]。

2.3 教学方法不适应能力培养

传统实训基地的教学方法多以教师示范、学生模仿为主,缺乏项目式、探究式学习设计,未能对接智能工厂"人机协同"的岗位能力要求。在实训教学过程中,企业参与度较低,实践场景真实性差,学生职业岗位能力培养不足。传统评价方式多以学生的最终实训成果为主,缺乏对实训过程的全面评价。评价指标注重学生模拟操作的规范性和验证结果的准确性,缺乏对创新思维、团队协作能力、问题解决能力等综合素质的评价^[6]。

3 "两融合三对接"实训基地育人模式创新

3.1 对接食品产业智能化升级需求,构建"虚实结合"的实训基地

为满足食品产业智能化升级对高素质技能人才培

养需求, 学院与亿滋食品、新道科技等龙头企业合作, 通过引入企业的先进智能制造设备和技术、智改数转现 有食品生产线设备,建成烘焙食品、休闲食品、饮料等 智能化实体实训车间和食品研发与检测中心, 按照食品 企业的生产流程和岗位设置划分实训区域,模拟真实生 产场景,实现真实产线教学化。针对实践教学"三高三 难"问题,学院与欧倍尔、东方仿真等科技企业利用虚 拟现实(VR)和增强现实(AR)技术,联合开发食品加 工、食品检验等相关的虚拟仿真软件、模拟生产沙盘、 半实物设备等教学资源,建成食品虚拟工厂、虚拟仿真 实训基地。通过虚拟仿真平台进行设备操作、工艺流程 模拟、质量检测等虚拟实训,保证了实训效果。合作企 业参与实训基地的管理和运营, 为学生提供实习岗位和 实践项目,企业技术人员参与实训指导,将企业的生产 标准和管理经验融入实训教学过程中, 提升学生的岗位 适应能力。建立数字化管理平台,利用物联网、大数据 等技术,对食品智能化实训车间、食品虚拟工厂、虚拟 仿真实训基地等设备、人员、教学过程等进行数字化管 理, 提高实训基地的运行效率和管理水平。

3.2 对接智能化职业岗位群能力要求,构建工智融 合的模块化课程体系

围绕食品智能加工、智能设备操作、质量安全等职 业岗位群能力要求,绘制智能制造岗位能力图谱,开发 工智融合的模块化专业课程。在公共基础课中新增《人 工智能基础》等课程,打造基础共享课程平台。在专业 核心课程中融入智能制造技术, 升级建设原专业课程, 如将《食品生产技术》升级为《食品智能加工技术与应 用》,新增《智能综合实践训练》等课程,培养学生掌 握智能化生产流程和技术操作的能力。根据职业岗位发 展需要,设置岗位能力拓展模块课程,如《食品大数据 分析及应用》等课程,满足学生多样化的岗位需求。将 食品专业标准、行企标准、职业技能等级标准和产业"四 新"要求融入专业课程标准及内容,构建"基础共享-专业核心-拓展互选"模块化课程体系。校企联合开展 实践教学夯实基础技能、专项实训强化核心技能、顶岗 实习提升综合技能,构建逐层递进的实践教学体系。企 业导师与专业教师共同拆解"产业技术链"中的智能岗 位能力点,通过知识转化,形成"教学知识链"课程内 容,形成动态协同的"双螺旋"内容更新机制。

3.3 对接食品智能制造生产过程,构建多元协同的 教学方法

针对学情和课程特点采用项目教学、混合式教学、 情景模拟、智慧交互等方法,即以食品智能加工的工作 过程为主线,将专业核心课程内容分解为若干个项目任 务,让学生在完成项目的过程中掌握食品智能加工知识 和技能,以真实生产任务驱动能力形成;利用在线课程 教学平台和虚拟仿真技术及丰富多样的教学资源, 开展 线上理论教学和虚拟仿真实训,线下通过实体设备进行 实际操作训练,确保学生在实践中掌握真实技能;利用 虚拟现实(VR)和增强现实(AR)技术,构建食品智能 生产的虚拟场景,到食品企业的智能生产车间,进行沉 浸式模拟教学; 利用智慧教学平台, 教师与学生、学生 与学生之间可以实时互动,利用平台记录学生的学习过 程和操作数据,进行过程性评价,及时发现学生的问题 并给予及时精准反馈,实现个性化学习支持。实施企业 导师制,引入真实生产项目,培养学生解决复杂问题的 能力。构建"知识+能力+素质"三维评价模型,构建过 程性评价、项目评价、增值评价等多元化评价体系,实 施智能化教学动态评价。

4 实践效果

4.1 人才培养质量提升

近年来,学院食品智能加工技术专业群学生职业技 能等级证书获得率达 100%, 就业率超过 96%, 荣获全国 高校毕业生基层就业卓越奖1项。荣获国家技能大赛、 创新大赛金奖4项,省级技能大赛、创新大赛金奖6项。 主持省级大学生创新创业实践项目6项,发表研究论文 8篇,参与申报专利5项。

4.2 社会服务能力增强

食品研发检测中心获得 CMA 和 CNAS 双认证, 累计 服务食品企业60余家,节约成本超1000万元/年。联 合技术攻关 10 项,解决食品企业技术难题 69 项,转移 转化成果 21 项, 荣获全国食品工业科技进步二等奖 1 项,获批教育部精准帮扶典型项目1项。联合开展高端 定制班、现代学徒制班6个,为企业输送高端技能人才 300 多名。获批江苏省职业教育"双师型"教师培训基 地1个,举办师资培训3期。

4.3 业内影响力扩大

学院领衔开发食品药品和粮食大类实训教学条件 标准等5项,承办全国职业院校技能大赛3项,主持建 设"食品加工技术"国家级专业教学资源库2个,推广 至全国60余所高职院校。立项建设省级实训基地3个、 科普教育基地2个、现代产业学院1个,实训基地建设 案例入选教育部产教融合典型案例,实训基地建设成果 多次被《中国教育报》等媒体报道。食品智能加工技术 专业群在金平果专业群综合排名中位列第一。

5 结论与展望

本文聚焦于智能制造背景下高职食品类专业"两融 合三对接"实训基地育人模式创新与实践,通过深入分 析其理论依据,明确了该模式契合职业教育发展规律与 产业需求,为创新育人模式提供了坚实支撑。实践证明, 该模式有效解决了传统实训基地的弊端,实现了人才培 养与食品智能制造需求的精准匹配。未来需要进一步强 化数字化赋能,完善校企协同育人机制,深化"数字孪 生+真实生产"的双轨实训体系,探索"AI+食品智能制 造"的个性化学习路径,提升教师智能技术应用能力, 推动跨区域校企实训资源共享,以应对食品工业智能化 转型对复合型技术技能人才的新需求。

参考文献

- [1]中国食品工业协会. 2022 年中国食品工业智能化发 展报告[R]. 北京:中国食品工业协会,2023.
- [2]马克思,恩格斯.马克思恩格斯全集:第23卷[M].北 京:人民出版社,1972.
- [3] 王晓茜, 刘斌, 基于协同育人理念的现代产业学院 建设研究[J]. 高等工程教育研究, 2021, (4): 145-150.
- [4] Spady W G. Outcome-Based Education: Critica 1 Issues and Answers[M]. Arlington: American A ssociation of School Administrators, 1994.
- [5] 张波,李宏军,孙伟.智能制造背景下食品专业人才 培养模式创新研究[J]. 食品与机械,2023,39(5):234-
- [6] 崔志钰, 陈鹏. 高职实训教学"三高三难"问题及其 破解路径[J]. 教育与职业, 2020, (15): 79-83.

作者简介: 田其英(1980-), 男, 山东聊城人, 江苏 食品药品职业技术学院食品学院, 副教授、博士, 主 要从事食品智能加工技术教学研究。

本文系江苏职业教育研究立项课题"职业院校智慧实 验实训室建设及教学应用研究"(项目编号: XHYBLX2 023181)的阶段性研究成果。