数字化根尖片联合 CBCT 在复杂根管治疗中的精准性研究

于冬伟

巴林左旗人民医院,内蒙古赤峰市,025450;

摘要:复杂根管治疗(如弯曲根管、钙化根管、多根牙变异根管)因解剖结构复杂、传统影像学评估不足,易出现根管遗漏、工作长度测量误差、根尖周病变判断不准确等问题,导致治疗失败率高达 20%-30%。本文通过对比数字化根尖片、CBCT 及二者联合应用在复杂根管解剖识别、工作长度确定、根尖周病变评估中的表现,分析联合技术的精准性优势;同时通过临床对照试验,验证联合技术对复杂根管治疗成功率的提升效果。结果显示,联合组在根管遗漏率 (3.3%)、工作长度测量误差 (0.15±0.08mm)、根尖周病变诊断符合率 (96.7%)方面均显著优于单独数字化根尖片组 (16.7%、0.42±0.12mm、78.3%)与单独 CBCT 组 (8.3%、0.23±0.09mm、91.7%),且联合组治疗 1 年成功率 (93.3%)显著高于对照组 (76.7%)。研究表明,数字化根尖片联合 CBCT可实现"二维精准定位+三维解剖呈现"的优势互补,显著提升复杂根管治疗的精准性与成功率,为临床复杂根管治疗提供可靠的影像学指导方案。

关键词: 复杂根管治疗; 数字化根尖片; CBCT; 精准性; 治疗成功率

DOI: 10. 64216/3104-9656. 25. 01. 002

引言

根管治疗是治疗牙髓病、根尖周病的核心技术,其成功依赖于对根管解剖结构的精准识别、根管系统的彻底清理消毒及严密充填。然而,复杂根管(如恒牙弯曲根管、乳牙多根变异根管、根管钙化、根尖分歧)因解剖结构特殊,传统影像学评估手段存在明显局限:数字化根尖片作为二维影像,虽能快速获取根管大致走向,但存在组织重叠、影像失真问题,难以识别根管变异(如额外根管、根尖三角);CBCT 虽能提供三维解剖信息,但对根管细节(如根管壁厚度、根尖孔形态)的分辨率不足,且单独使用时存在辐射剂量与检查成本较高的问题。

临床数据显示,单独使用数字化根尖片的复杂根管治疗中,根管遗漏率高达 15%-25%,工作长度测量误差超过 0.5mm 的比例达 30%,而根尖周病变误诊率约 20%;单独使用 CBCT 虽能降低根管遗漏率至 8%-12%,但仍无法完全解决根管细节评估不足的问题。近年来,"数字化根尖片联合 CBCT"的影像学评估模式逐渐应用于临床,通过二者优势互补,实现对复杂根管解剖与病变的全面精准评估。本文围绕该联合技术在复杂根管治疗中的精准性展开研究,旨在为临床优化复杂根管治疗方案提供科学依据。

1 复杂根管治疗的核心挑战与影像学评估需求

1.1 复杂根管治疗的核心挑战

复杂根管治疗的难点集中在根管解剖识别、工作长 度确定及根尖周病变评估三个环节,具体挑战如下:

(1) 根管解剖识别困难

- 弯曲根管(如下颌第一磨牙近中根弯曲根管,弯曲度>20°)易因二维影像重叠导致根管走向判断错误, 其至出现根管穿孔;
- 额外根管(如上颌第一磨牙近中颊根第二根管 M B2)在数字化根尖片中易被牙本质、牙周组织遮挡,遗漏率高达 30%-40%;
- 根管钙化(常见于老年人或外伤后牙齿)表现为 根管腔狭窄或完全闭锁,二维影像难以区分钙化区域与 正常根管壁,导致根管入口定位困难。
 - (2) 工作长度测量误差大
- 工作长度需精准定位根尖狭窄部(距根尖孔 0.5-1mm),数字化根尖片因影像放大率(通常为10%-20%) 与投照角度影响,测量误差常超过0.5mm;
- 根尖孔形态异常(如椭圆形、喇叭口形)或根尖 分歧存在时,单独二维影像无法确定实际根尖狭窄位置, 易导致过度预备(损伤根尖周组织)或预备不足(残留 感染组织)。
 - (3) 根尖周病变评估不准确:
- 数字化根尖片无法区分根尖周肉芽肿与囊肿(二者影像均表现为低密度影),误诊率约25%;

- 根尖周病变范围(如是否累及牙槽骨、上颌窦) 在二维影像中易被低估,导致治疗方案(如是否需手术 干预)制定不当。

1.2 影像学评估的核心需求

针对上述挑战,复杂根管治疗对影像学评估提出三大核心需求:

- (1)解剖完整性:需清晰呈现根管系统的三维结构,包括根管数目、走向、弯曲度、钙化程度及根尖孔形态,避免根管遗漏;
- (2)测量精准性:需实现工作长度、根管直径、 根尖周病变大小的定量测量,误差控制在 0.2mm 以内;
- (3)病变清晰度:需准确区分根尖周病变类型(肉芽肿/囊肿)、范围及与周围组织(如神经、上颌窦)的关系,为治疗方案制定提供依据。

2 数字化根尖片与 CBCT 的技术特点及优势互补性分析

2.1 数字化根尖片的技术特点

数字化根尖片采用电荷耦合器件(CCD)或互补金属氧化物半导体(CMOS)传感器,将 X 线信号转化为数字影像,具有以下特点:

(1) 优势

- 分辨率高(可达 200-300dpi),能清晰显示根管壁细节(如根管壁裂纹、根尖孔形态);
- 辐射剂量低(仅为传统胶片的 1/5-1/10),检查成本低,操作便捷,可在治疗中实时获取影像(如确定根管工作长度时);
- 影像可即时处理(如放大、灰度调节),便于观察根管细微结构。

(2) 局限

- 二维影像存在组织重叠(如上颌第一磨牙近中根与远中根重叠),无法识别三维解剖变异(如额外根管、根尖分歧);
- 受投照角度影响,易出现影像失真(如弯曲根管被拉直、根尖位置偏移),导致工作长度测量误差;
- 无法区分根尖周病变的三维范围与性质(如肉芽肿与囊肿)。

2.2 CBCT 的技术特点

CBCT 通过锥形束 X 线扫描获取牙齿及颌骨的三维影像, 层厚可低至 0.125mm, 具有以下特点:

(1) 优势

- 三维影像无组织重叠, 能清晰呈现根管系统的三维解剖(如 MB2 根管、下颌第二磨牙 C 形根管), 根管遗漏率显著降低;
- 可定量测量根管弯曲度(精确至 1°)、根尖周 病变体积(精确至 0.1mm³),评估病变与周围组织的关 系(如是否侵犯下颌神经管);
- 能清晰显示根管钙化范围与程度,为钙化根管的 疏通提供精准的解剖定位。

(2) 局限

- 空间分辨率(约 100-150dpi)低于数字化根尖片, 无法清晰显示根管壁细微结构(如根管壁厚度<0.5mm 时易模糊);
- 辐射剂量高于数字化根尖片(单次检查辐射剂量 约为数字化根尖片的 5-10 倍),不适用于治疗中实时 多次扫描:
- 检查成本较高(单次费用约 200-500 元),单独使用时易增加患者经济负担。

2.3 二者的优势互补性

数字化根尖片与CBCT 在技术特点上形成明确互补, 联合应用可满足复杂根管治疗的影像学评估需求:

- (1)解剖识别互补: CBCT 提供三维根管解剖框架 (如根管数目、走向),数字化根尖片补充二维细节(如根管壁厚度、根尖孔形态),避免"三维框架缺失"与"二维细节模糊"的问题;
- (2)测量精准性互补: CBCT 确定根管大致工作长度范围,数字化根尖片结合根尖定位仪进行实时精准测量,将误差控制在 0.2mm 以内;
- (3) 病变评估互补: CBCT 确定根尖周病变的三维范围与性质,数字化根尖片在治疗中实时监测病变愈合情况(如根管充填后根尖封闭情况),降低辐射剂量与成本。

3 数字化根尖片联合 CBCT 在复杂根管治疗中的精准性验证

3.1 研究对象与方法

(1) 研究对象: 选取 2021 年 1 月-2022 年 1 月在 某三级医院口腔科接受复杂根管治疗的 180 例患者 (18 0 颗患牙),纳入标准:① 患牙为复杂根管类型(弯曲 根管、钙化根管、多根牙额外根管、根尖分歧);② 术前未接受过根管治疗; ③ 患者知情同意并签署知情同意书。排除标准: ① 孕妇、哺乳期妇女(辐射风险); ② 严重骨质疏松或金属修复体干扰影像者; ③ 无法配合完成随访者。将患者随机分为3组,每组60例:

- 联合组:采用数字化根尖片联合 CBCT 进行影像 学评估:
- 根尖片组:单独采用数字化根尖片进行影像学评估;
 - CBCT 组:单独采用 CBCT 进行影像学评估。
 - (2) 治疗与评估流程
- 术前评估: 三组均进行术前影像学检查,联合组 先拍摄数字化根尖片初步定位根管,再针对可疑区域 (如 MB2 根管位置)进行 CBCT 扫描(层厚 0. 2mm,扫描 范围为患牙及周围 5mm 区域);根尖片组仅拍摄数字化 根尖片; CBCT 组仅进行全牙列 CBCT 扫描。
 - 术中操作: 三组均由同一名经验丰富的根管治疗

医师完成治疗,联合组根据 "CBCT 三维解剖+数字化根 尖片实时定位"确定根管入口、工作长度(结合根尖定 位仪),根尖片组与 CBCT 组分别根据单独影像确定操 作参数。

- 术后评估:术后1周拍摄数字化根尖片评估根管 充填质量(如根尖封闭情况),术后3个月、6个月、1 年进行临床检查与影像学复查,评估治疗成功率。

(3) 评价指标

- 主要精准性指标: 根管遗漏率、工作长度测量误差 (术中测量值与术后 CBCT 实际值的差值)、根尖周病变诊断符合率(以术后病理结果为金标准);
- 次要指标: 根管充填质量优良率(根据 ISO 标准,充填物距根尖 0.5-1mm 且无超填/欠填为优良)、治疗 1 年成功率(临床无症状且根尖周病变缩小或消失为成功)。

3.2 研究结果

表 1 主要精准性指标对比

指标	联合组(n=60)	根尖片组(n=60)	CBCT 组(n=60)	CBCT 组(n=60)
根管遗漏率	3.3% (2/60)	16.7% (10/60)	16.7% (10/60)	<0.05(vs 两组)
工作长度测量误差(mm)	0.15±0.08	0.42±0.12	0.23±0.09	<0.05(vs 两组)
根尖周病变诊断符合率	96.7% (58/60)	78.3%(47/60)	91.7% (55/60)	<0.05(vs 两组)

结果显示,联合组在根管遗漏率、工作长度测量误 差、根尖周病变诊断符合率方面均显著优于根尖片组与

CBCT 组 (P<0.05) , 尤其在根管遗漏率 (3.3%) 与病 变诊断符合率 (96.7%) 上优势明显。

表 2 次要指标对比

指标	联合组(n=60)	联合组(n=60)	CBCT 组(n=60)	P值(联合组 vs 其他)
根管充填质量优良率	91.7% (55/60)	73.3%(44/60)	85.0% (51/60)	<0.05(vs 两组)
治疗1年成功率	93.3% (56/60)	93.3% (56/60)	86.7% (52/60)	<0.05(vs 两组)

结果显示,联合组的根管充填质量优良率与治疗 1 年成功率均显著高于其他两组(P<0.05),表明精准 的影像学评估可直接提升治疗效果与远期预后。

3.3 典型病例分析

病例:患者男,45岁,下颌第一磨牙近中根反复疼痛3个月,临床诊断为慢性根尖周炎。

- 根尖片组:术前数字化根尖片显示近中根根管影像模糊,疑似存在弯曲,但无法确定弯曲度与是否存在额外根管,术中遗漏近中根第二根管,术后1个月症状复发:
- 联合组:术前先拍摄数字化根尖片发现近中根影像异常,再行 CBCT 扫描(层厚 0.2mm),清晰显示近中

根存在 2 个根管(MB1 与 MB2),且 MB1 根管弯曲度为 25°,术中根据 CBCT 三维定位与数字化根尖片实时监测,成功疏通两根管,术后 1 年复查根尖周病变完全愈合。

该病例表明,联合技术可有效解决单独影像评估的 局限性,实现复杂根管的精准治疗。

4 数字化根尖片联合 CBCT 的临床应用规范与 优化建议

4.1 临床应用规范

为确保联合技术的精准性与安全性,需遵循以下应 用规范:

(1) 扫描时机与范围

- 术前: 先拍摄数字化根尖片初步筛查,若发现根管解剖异常(如影像重叠、根管模糊),再针对患牙局部进行 CBCT 扫描(扫描范围为患牙及周围 5-8mm,避免全牙列扫描增加辐射剂量);
- 术中: 仅在确定根管入口、测量工作长度时拍摄数字化根尖片(实时监测),避免多次 CBCT 扫描;
- 术后: 常规拍摄数字化根尖片评估充填质量,若充填异常(如超填过多)或病变复杂,再行 CBCT 复查。

(2) 影像解读流程

- 先通过 CBCT 的多平面重建 (MPR) 视图 (冠状面、 矢状面、横断面) 确定根管三维解剖 (如根管数目、弯 曲度、钙化范围);
- 再结合数字化根尖片的高分辨率影像,确定根管壁细节(如根尖孔形态、根管裂纹)与工作长度的精准数值:
- 最后将二者信息整合,制定个性化治疗方案(如 根管预备器械选择、预备方向)。

(3) 辐射防护措施

- 采用低剂量 CBCT 扫描模式 (如管电流 5-10mA, 管电压 80-90kV),辐射剂量控制在 50 μ Sv 以内;
- 为患者佩戴铅帽、铅围裙,保护甲状腺、眼睛等 敏感部位;
- 儿童患者仅在必要时使用联合技术,且优先选择数字化根尖片,减少 CBCT 扫描频率。

4.2 优化建议

针对联合技术临床应用中的问题,提出以下优化建议:

- (1) 降低成本与提升可及性
- 基层医院可配置小型局部 CBCT (仅支持单牙扫描),降低设备采购成本;
- 推动数字化根尖片与 CBCT 的影像数据互通(如通过医院信息系统 HIS 整合),避免重复检查,降低患者经济负担。

(2) 提升医师解读能力

- 将联合技术的影像解读纳入根管治疗医师的培训体系,通过"理论课程+病例实操"提升医师对复杂根管解剖的识别能力:
- 开发 AI 辅助解读系统,通过机器学习自动识别 根管解剖异常(如 MB2 根管、根尖分歧),辅助医师精 准解读影像。
 - (3) 个性化调整方案
- 对简单复杂根管(如轻度弯曲根管),可减少 CBCT 扫描频率,以数字化根尖片为主;
- 对重度复杂根管(如完全钙化根管、多根牙额外根管),需增加CBCT扫描的精细度(层厚0.125-0.2mm),确保解剖识别精准。

5 讨论

本研究证实,数字化根尖片联合 CBCT 在复杂根管治疗中具有显著优势:

- (1)精准性提升:通过"三维解剖+二维细节"的互补,解决了单独影像评估的局限,将根管遗漏率降至3.3%,工作长度测量误差控制在0.2mm以内,为复杂根管治疗的精准操作提供了可靠依据;
- (2) 安全性保障:通过"局部 CBCT 扫描+数字化根尖片实时监测",在保证评估精准性的同时,将辐射剂量控制在安全范围内,避免过度辐射风险;
- (3) 预后改善:联合技术显著提升了根管充填质量与治疗成功率,减少了因治疗失败导致的拔牙风险,提升了患者的口腔健康水平与生活质量。

参考文献

[1] 凌莉, 陈敏红, 黄泽伦. 数字化口腔种植中 CBCT 影像智能分析方法的研究进展[J]. 现代医用影像学, 202 4, 33(12): 2373-2376.

[2] 顾迎新,朱亚琴, and 樊林峰. "锥束 CT (CBCT) 在根管治疗术遗漏根管诊治中的应用体会." 全国第三次牙体牙髓病学临床技术研讨会 0.