火力发电设备的故障诊断与维护技术

司文朋

中冶南方都市环保工程技术有限公司, 湖北武汉, 430000;

摘要:火力发电设备的稳定运行对电力供应至关重要。故障诊断与维护技术可及时发现设备潜在问题,避免故障扩大。介绍了常见故障类型及诊断方法,如振动监测、温度监测等,同时阐述了有效的维护技术,包括定期 巡检、状态检修等,以保障火力发电设备的高效、可靠运行。

关键词:火力发电设备;故障诊断;维护技术

DOI: 10. 64216/3080-1508. 25. 08. 027

引言

火力发电在我国电力结构中占据重要地位,火力发 电设备的正常运转直接影响电力系统的稳定性。然而设 备在长期运行中易出现各种故障,因此研究其故障诊断 与维护技术具有重要意义,可提高设备可靠性,降低运 行成本。

1 故障诊断技术

1.1 振动监测诊断

振动监测诊断是火力发电设备故障诊断中应用最 广泛的技术之一,主要针对汽轮机、发电机、引风机、 给水泵等核心旋转机械。该技术通过在设备关键运行部 位合理布置振动传感器,这些部位通常包括轴承座的垂 直、水平和轴向方向,能够实时捕捉设备运行时产生的 振动信号。传感器将采集到的振动信号传输至专用的数 据采集与分析系统,系统会对信号进行滤波、降噪等预 处理, 再通过专业算法将时域信号转化为频域信号, 生 成直观的振动频谱图。技术人员通过对比设备正常运行 与异常状态下的频谱特征,能够快速识别故障类型,比 如特定频率峰值的出现可能意味着转子不平衡, 而高频 段连续的频谱峰则可能指向轴承磨损问题。同时结合设 备实时的转速、负荷等运行工况参数,可进一步精准判 断故障的严重程度,为后续制定针对性的维修方案提供 可靠依据,有效避免因振动故障导致设备停机或更严重 的损坏。

1.2 温度监测诊断

温度监测诊断是保障火力发电设备安全运行的重要预警手段,覆盖锅炉、汽轮机、电气系统等多个关键环节。在锅炉系统中,工作人员会在水冷壁管、过热器管、再热器管等受热面安装温度监测元件,这些元件能适应高温环境,实时跟踪管壁温度变化。当某一区域管

壁温度超出正常运行范围时,监测系统会立即发出预警,提示该部位可能存在结渣、积灰或管内结垢等问题,若不及时处理,可能导致管壁过热鼓包甚至爆管事故。对于汽轮机,会在轴瓦、推力轴承、汽封等关键部位布置温度传感器,一旦监测到温度超过安全阈值,需第一时间检查润滑系统,排查是否存在润滑油量不足、油质劣化或油路堵塞等导致润滑失效的问题。在电气设备方面,发电机定子绕组会采用特殊的温度监测方式,实时掌握绕组温度分布情况,若局部温度出现异常骤升,可能是绝缘层破损引发局部短路,此时需紧急停机检修,防止故障进一步扩大影响机组安全。

2 维护技术分类

2.1 预防性维护

预防性维护是火力发电设备运维体系的核心组成 部分,通过提前制定科学合理的维护计划,有效降低设 备故障发生率。该维护模式以设备制造商提供的维护手 册为基础,结合设备实际运行时长、工况条件以及历史 故障记录,制定出个性化的周期维护方案。对于汽轮机 这类核心设备,会按照固定周期开展润滑油系统维护工 作,包括更换符合标准的润滑油、清洗油滤网、检查并 调整油压调节阀,确保润滑油的润滑性能和冷却性能满 足设备运行需求;同时定期对转子进行动平衡测试,避 免因转子质量分布不均引发振动故障。针对锅炉系统, 会定期组织炉膛清灰作业,清除受热面表面的积灰,保 障锅炉热交换效率;按时对锅炉水质进行全面检测,根 据检测结果调整水质处理药剂的添加量,防止管道内部 出现结垢和腐蚀现象。在电气设备维护方面,会定期对 变压器进行油质分析, 判断其内部是否存在局部放电或 过热故障;按周期对高压断路器进行机械特性测试,检 查其分合闸动作的可靠性和准确性,确保电气系统稳定 运行。

2.2 纠正性维护

纠正性维护是火力发电设备发生故障后采取的应 急修复措施,核心目标是在最短时间内恢复设备正常运 行,减少故障对机组发电效率的影响。当设备出现故障 报警时,维护人员首先会通过故障诊断系统调取设备的 实时运行参数和历史故障数据,结合现场巡检情况,初 步判断故障范围和可能原因。例如当引风机出现振动超 标报警时,通过振动频谱分析确定故障源于叶轮磨损后, 会立即启动停机程序,拆解引风机外壳,更换磨损的叶 轮部件,更换过程中严格按照安装标准控制部件的装配 精度,组装完成后进行试运转,持续监测振动数值,直 至其恢复到正常运行范围。若发电机出现定子绕组短路 故障,维护人员会先利用专业仪器对绕组进行绝缘测试, 精准定位短路位置,随后拆除损坏的绕组线圈,按照原 设计参数重新绕制绕组,并进行浸漆、烘干等绝缘处理, 修复后还需开展绝缘性能测试和电气参数校验,确保各 项指标达标。故障修复完成后,维护人员会详细记录故 障发生时间、原因、处理过程及结果,将其纳入设备故 障档案,为后续优化预防性维护计划提供参考,同时深 入分析故障产生的根本原因,采取相应的改进措施,避 免同类故障再次发生。

3 故障类型及成因

3.1 机械故障

火力发电设备的机械故障主要集中在旋转部件和 传动系统, 其成因与设备制造、安装精度以及日常运行 维护密切相关。汽轮机的转子不平衡故障较为常见,造 成这一故障的原因可能是设备制造过程中转子材质密 度不均匀,也可能是设备运行过程中叶片表面附着积灰、 结垢,或长期磨损导致叶片质量发生变化,进而使转子 质量分布失衡。这种故障会导致汽轮机运行时产生周期 性振动, 且振幅会随转速升高而不断增大, 严重时会损 坏轴承, 甚至引发转子弯曲等更严重的事故。风机和水 泵等辅机设备的叶轮磨损故障也较为普遍, 主要是因为 设备在运行过程中,输送介质中含有的硬质颗粒会长期 冲刷叶轮表面,同时叶轮在长期高速运转下会出现疲劳 损伤,这两方面因素共同作用导致叶轮磨损加剧,不仅 会使设备的输送效率大幅下降,还会引发设备振动和噪 声增大。锅炉系统中的炉排卡涩故障, 通常是由于炉排 片之间的间隙被炉渣、灰尘堵塞, 或炉排传动链条因长 期使用出现磨损、松弛现象,导致炉排无法按照正常速 度运转。

3.2 电气故障

火力发电设备的电气故障涉及发电、配电和用电等 多个环节,这类故障对机组安全运行的威胁较大,一旦 发生可能造成严重后果。发电机的定子绕组短路故障是 较为典型的电气故障,引发该故障的主要原因是绕组绝 缘层在长期高温、高电压的运行环境下逐渐老化、开裂, 失去绝缘性能, 也可能是设备受潮后绕组绝缘层的绝缘 电阻下降,导致相邻绕组之间出现短路。短路产生的大 电流会迅速烧毁绕组线圈,产生的高温还可能引发发电 机内部起火,严重影响发电机的安全运行。变压器的铁 芯多点接地故障也较为常见,造成这一故障的原因通常 是铁芯绝缘垫在安装或运行过程中损坏,或有金属异物 讲入铁芯缝隙, 使铁芯与接地体之间形成多个导电通路。 这种故障会导致铁芯内部产生大量涡流, 涡流会使铁芯 温度急剧升高,加速绝缘部件老化,缩短变压器的使用 寿命,严重时还可能引发变压器内部短路。高压断路器 的触头接触不良故障也会对电气系统造成影响,该故障 多是由于触头表面长期暴露在空气中, 受到氧化作用形 成氧化层,或因灰尘、油污等污染物附着导致接触电阻 增大。当断路器通断电流时,接触电阻过大会产生大量 电弧,烧毁触头表面,使断路器无法可靠地切断或接通 电路,严重时可能引发电网故障,影响整个电力系统的 稳定。

3.3 控制故障

火力发电设备的控制故障会导致设备运行参数失控,破坏机组的稳定运行状态,其成因主要与控制系统硬件损坏、软件程序异常以及信号传输故障相关。锅炉水位控制系统故障是较为常见的控制故障,若水位传感器出现性能漂移,会导致其测量的水位值与实际水位偏差过大,进而使给水调节阀接收到错误的控制信号,出现误动作,造成汽包水位过高或过低。水位过高会导致蒸汽中携带大量水分,影响蒸汽品质,甚至可能引发汽轮机水冲击事故;水位过低则可能造成锅炉缺水,使受热面失去冷却,引发管壁过热爆管。汽轮机调速系统故障也会对机组运行产生严重影响,该故障的产生可能是调速器位移传感器出现信号采集错误,无法准确获取调速阀的实际位置,也可能是电液转换装置内部部件卡涩,导致调速阀开度无法根据机组负荷变化及时调整,最终使汽轮机转速波动过大,影响电能质量。

4 技术应用要点

4.1 数据采集与分析

数据采集与分析是火力发电设备故障诊断与维护 技术应用的基础环节,直接影响诊断结果的准确性和维 护方案的合理性。在数据采集阶段, 需根据设备类型和 故障诊断需求,科学选择采集点位和采集频率,确保覆 盖设备关键运行部位,同时避免冗余数据增加分析负担。 采集的数据类型不仅包括振动、温度等核心监测参数, 还需同步记录设备的运行负荷、转速、介质流量等工况 数据,这些数据能为后续分析提供更全面的背景信息。 数据采集完成后, 需通过专业软件进行预处理, 去除因 传感器干扰、外界环境影响产生的异常数据, 保证数据 的真实性和可靠性。在分析过程中,需结合设备的结构 特性、运行原理以及历史故障案例,运用频谱分析、趋 势分析、对比分析等方法,从数据中提取故障特征信息, 找出数据变化与设备故障之间的关联, 为精准判断故障 类型和成因提供依据, 避免因数据分析不全面导致诊断 偏差。

4.2 诊断结果评估

诊断结果评估是连接故障诊断与维护实施的关键 环节, 需从准确性、可靠性和实用性三个维度开展, 确 保诊断结果能有效指导维护工作。在准确性评估方面, 需将诊断得出的故障类型、部位与设备实际运行状态、 现场巡检情况进行对比验证, 查看是否存在遗漏或误判 的情况, 若发现诊断结果与实际不符, 需重新梳理数据 采集和分析过程,找出问题所在并修正诊断结论。可靠 性评估需考虑诊断过程中可能存在的不确定性因素,如 传感器精度偏差、数据传输损耗等,分析这些因素对诊 断结果的影响程度,判断诊断结论的可信范围,为维护 人员制定应对预案提供参考。实用性评估则聚焦诊断结 果对维护工作的指导价值,判断诊断得出的故障严重程 度、发展趋势是否清晰,能否直接转化为具体的维护措 施,以及维护措施实施后是否能有效解决故障问题,避 免因诊断结果过于抽象或模糊,导致维护工作缺乏明确 方向,影响维护效率和效果。

5 技术发展趋势

5.1智能化诊断

智能化诊断是火力发电设备故障诊断技术未来的 核心发展方向,依托人工智能、大数据、机器学习等先 进技术,实现诊断过程的自动化、精准化和提前预警。 未来的智能化诊断系统将具备自主学习能力,能通过不 断积累设备运行数据和故障案例,优化诊断算法模型, 提高对复杂故障、潜在故障的识别能力,甚至能在设备 未出现明显异常信号时,根据数据变化趋势预测可能发生的故障,实现从"事后诊断"向"事前预测"的转变。同时,智能化诊断系统将打破传统单一参数诊断的局限,实现多源数据的融合分析,综合利用振动、温度、压力、电气参数等多维度数据,构建更全面的故障诊断模型,减少因单一数据片面性导致的诊断误差。

5.2 远程维护

远程维护技术将成为火力发电设备维护领域的重 要发展趋势, 通过物联网、通信技术和远程控制技术的 融合应用,打破时间和空间的限制,实现对设备的异地 监测和维护指导。未来,火力发电企业可构建统一的远 程维护平台,将分散在不同区域的设备运行数据实时传 输至平台,专业维护团队可在远程对设备运行状态进行 24 小时监测, 及时发现设备异常情况, 无需人员到现场 即可完成初步故障诊断。对于一些简单的故障,维护人 员可通过远程控制技术,直接对设备的控制参数进行调 整或启动应急处理程序, 快速恢复设备正常运行: 对于 复杂故障, 远程维护平台可实现现场维护人员与专家的 实时交互, 专家通过平台查看设备数据、现场图像, 为 现场人员提供精准的维护指导, 避免因专家到场不及时 延误故障处理。远程维护不仅能减少人员现场作业的安 全风险,降低维护成本,还能整合优质维护资源,提升 整体维护水平, 尤其适用于地理位置偏远、环境恶劣的 火力发电站点。

6 结束语

火力发电设备的故障诊断与维护技术不断发展,对保障电力供应意义重大。通过先进的诊断方法和有效的维护措施,可提升设备性能和可靠性。未来需持续探索新技术,以适应火力发电行业的更高要求,推动电力事业的稳定发展。

参考文献

- [1]王晓宙,张潇.火力发电厂电气运行中故障原因及应对措施[J]. 电子技术与软件工程,2017(01):249-25
- [2] 邓昕昂. 火电厂电气一次设备故障检测与维修[J]. 设备管理与维修, 2022(06):83-85.
- [3]王婷. 火力发电厂电气设备的检修与维护[J]. 科技与创新, 2024 (22): 80-82.
- [4] 李振华. 基于人工智能的电力设备故障预测系统设计[J]. 自动化应用, 2023 (05): 45-48.