公路施工中混凝土的强度试验要点研究

徐广俊

昆明云枢工程检测有限公司, 云南昆明, 650000;

摘要:在公路工程项目的现代化建设过程中,规范工程施工流程,合理把控混凝土的强度与质量,完成强度试验工作,准确分析强度试验的具体技术,从抗压、抗拉强度测试层面出发,规范具体的试验流程,准确反映混凝土材料的实际情况。文章主要对公路施工中混凝土强度试验的重要性进行分析,结合混凝土强度试验的影响因素,在此基础上提出具体的强度试验技术与应用要点。

关键词:公路施工;混凝土;强度试验 **DOI:** 10.64216/3080-1508.25.08.009

针对公路施工建设的现代化发展,综合考虑混凝土 强度状况,开展强度试验与分析,呈现完整的测试数据。 为此,工作人员要根据混凝土的材料状态,合理运用超 声回弹试验技术、无损试验技术与钻芯试验技术,提高 公路施工效率与质量,确保混凝土强度符合工程建设要 求。

1 公路施工中混凝土强度试验的重要性分析

在现代工程建设与发展过程中,综合考虑公路施工 的稳定性和安全性, 合理规划公路工程项目, 优化混凝 土结构,运用质量较高的混凝土材料,突出混凝土材料 的基础保障作用。首先,混凝土材料作为重要建材,只 有做好混凝土强度的合理把控,才能够提高工程施工效 率,做好基础保障工作,通过混凝土强度试验的方式, 优化各种检测技术,重点分析混凝土材料的强度变化, 选择最佳的材料类型,从而推动工程建设的稳定发展, 保障工程的最终质量[1]。其次,混凝土强度试验能够优 化施工流程,做好全面有效的准备工作,根据强度试验 的具体结果选择合适的混凝土材料,由于混凝土属于工 程施工必不可少的材料类型,对工程建设有着决定性作 用,通过强度试验优化混凝土配比,避免后期施工过程 中出现材料不合格而返工的情况,简化施工流程,提高 工程建设效率。最后,混凝土强度试验运用各种科学技 术,综合把握公路施工的安全隐患,通过强度检测技术 与试验方法的运用及时发现施工质量问题,并对这些问 题集中处理与分析, 避免发生较为严重的安全事故, 不 仅能够推动公路工程的现代化建设,对工程行业的发生 有着重要影响,还能够保障公路施工的经济效益,做出 科学合理的材料把控。同时,混凝土强度试验在公路施 工中运用对现代工程建设有着极其重要的影响,符合公 路施工的具体要求,规范工程混凝土结构,打造强度较 高的混凝土构件,提高公路施工效率与质量。

2 公路施工中混凝土强度的影响因素分析

2.1 原材料质量的影响

在公路施工过程中混凝土作为重要建材,强度把控 要求较高,重点分析混凝土材料的构成情况,主要原材 料有水泥、骨料、水以及外加剂,原材料的质量直接影 响混凝土强度。首先,水泥作为混凝土中的关键原材料, 不同品种的水化速率不同,常见的水泥有硅酸盐水泥、 矿渣水泥等, 高强度等级水泥能够配制强度更高的混凝 土。其次,水的选择与把控同样重要,一般饮用水即可, 含有酸、糖等物质的水不能使用,影响水泥的水化与凝 结。最后,骨料直接增加混凝土材料的强度,骨料自身 要坚硬稳定,如果骨料颗粒较大,将出现混凝土融合不 到位的情况[2]。同时,掺和料的种类与比例要求较高, 常见的掺和料有粉煤灰、矿渣等,增强混凝土的耐久性 与强度,完成原材料的质量把控,准确选择混凝土配制 原材料。另外,工作人员还需要合理计量,计算水泥、 水、骨料或其他外加剂的配比量,搅拌均匀,确保水泥、 骨料等有效混合。

2.2 不规范试验的影响

在混凝土强度把控过程中,强度试验作为不可或缺的流程,即使混凝土自身强度达标,不规范的试验操作也容易出现强度误判的情况,还容易影响混凝土的状态。首先,取样不合理,工作人员并没有选择合适的混凝土取样点,在搅拌车出料口取样,并没有选择在浇筑后取样,样品缺乏代表性,容易出现强度结果过低或过高的情况;其次,振捣不足,选择混凝土样品后要适当振捣,保证样品内部无气泡、孔洞,部分工作人员振捣次数较少,导致强度试验结果较低。这些不规范试验因素都会

导致最后的强度数值过高或过低,不具备代表性,无法 真正检测混凝土的强度。

2.3 外部环境因素

环境因素属于外部条件,对混凝土强度有着极其重要的影响,温度与湿度属于重要的环境因素,高温高湿将导致混凝土水分过早蒸发,水泥水化反应加快,影响混凝土的强度与质量。而温度过低将导致水泥水化反应速度下降,不利于混凝土强度的有效提升。湿度变化与混凝土强度联系密切,湿度不足将导致混凝土出现裂缝情况,抗压强度下降,同时风力因素对混凝土强度的影响较为严重,如果风力较强,将导致混凝土表面出现裂缝,增加施工现场的粉尘与杂物,影响混凝土强度的提升,还导致施工现场的清洁难度较大。

3 公路施工中混凝土的强度试验技术应用要点 分析

3.1 无损试验技术

在公路施工混凝土强度把控过程中,强度试验技术 的应用要求较高, 合理运用无损试验技术, 这种技术手 段对混凝土材料没有任何伤害,保证混凝土结构与性质 的完整稳定,不会因试验技术而发生改变,提高混凝土 材料的利用率,避免出现材料浪费的情况。无损试验技 术是对混凝土开展整体检测,检测结构更加可靠,使用 无损试验技术过程中工作人员要保证混凝土表面干净 整洁,适当清洁,避免混凝土表面存在杂质,完成混凝 土的各部分检测,不仅能够确保检测的全面性和完整性, 还能够提高试验结构的可行性。这种全面试验技术能够 完整掌握混凝土情况,综合分析混凝土每个部分的强度 变化,呈现准确的检测信息,进而展开试验判断。同时, 无损试验技术运用过程中发现强度不达标的情况,工作 人员要及时与施工单位沟通交流,有效解决各种质量问 题,及时跟进,沟通交流,重新调整混凝土材料的配比 情况,解决存在的各种问题,还要适当修补施工中的各 种问题,提高公路施工的整体质量。无损试验技术要求 对检测结果进行综合分析,集中数据,确保试验结果判 断的及时性和准确性。

3.2 超声回弹试验技术

超声回弹试验技术主要是将超声波与回弹法有效结合,作为综合性的试验方法,工作人员要综合分析检测数据,与强度状况构建相互关系,最终测定强度结果。这种方法的应用流程较为简单、操作方便、快捷可靠,

在公路施工领域得到较为广泛运用,能够有效提高试验 的精准度,为公路施工中混凝土材料的运用奠定坚实基 础[3]。首先,工作人员要利用超声波试验装置,对待测 材料与实体强度有效结合,实施无损检测,检测装置包 括智能仪器,完成超声波的发射与接收,完成超声波信 号的采集、运用与处理,显示更多信息,了解实体内部 的结构状况。其次,回弹试验要求工作人员自主运用回 弹仪展开测试,通过弹击杆驱动重锤,对混凝土表面进 行弹击,回弹产生数据信息,测定具体的回弹值。在实 际检测过程中,工作人员还要考虑混凝土材料的碳化情 况,容易产生误差数据,增加实体表面的硬度,无法完 成真实的强度测定。最后,将超声波与回弹试验有效结 合,根据实体中所传播的超声波速度,与实体表面所反 映的回弹值对比分析,综合反映混凝土实体的抗压强度, 完成综合性检测工作。这种试验技术在应用过程中有着 较为突出的优势, 超声波的穿透力较强, 直接进入混凝 土内部,反映真实的实体回弹状况,检查混凝土内部存 在的质量问题,进而反馈完整的混凝土强度信息。

3.3 钻芯试验技术

钻芯试验技术的应用较为突出,有着较强的代表性、 直观性, 最终的试验误差较小。首先, 工作人员要检测 样本的质量问题,规范混凝土的钻芯工作,直接在混凝 土内部取样, 合理运用钻芯机、芯样切割机、压力试验 机等设备,避开主筋、预埋件的位置取芯,均匀取样, 要具备代表性。其次,芯样直径为100mm或75mm,利用 压力试验机对芯样进行压缩测试,发现直径小于 75mm 的样品强度较大,标准偏差较大。进而,选择核心样品 完成强度试验, 混凝土样品直接从混凝土固体结构中提 取,工作人员要综合考虑混凝土样品提取的规范操作, 避免出现累积损坏的情况,导致混凝土强度下降。最后, 根据混凝土钻芯样品的提取情况,按照国家标准《钻芯 法检测混凝土强度技术规程》进行换算,获得更多的数 据信息,修正系数法明确钢筋混凝土的抗压强度要求, 合理把握混凝土芯样提取的具体位置,采取回弹试验的 修正方法,确保修正位置的准确性,提取有效的芯样。 同时,对于校正系数法的运用,工作人员还要选择总校 正方法或局部校正方法,综合分析核心样本的强度,获 取混凝土表面的回弹值, 最终全面反映混凝土的强度情 况。

4 公路施工中混凝土的强度试验要点分析

4.1 规范现场钻芯操作

在混凝土强度试验过程中,合理运用超声回弹试验 技术与钻芯试验技术,规范检测流程与试验方法,选择 合适的检测器材完成实验工作,对混凝土试块进行钻芯 的提取,要求钻芯结构与期龄达到 28d 以上。首先,利 用回弹试验的具体方法,完成超声波与回弹值的数值分 析,形成强度测试曲线,曲线的分析呈现混凝土各个部 位的强度状况,确保现场钻芯操作的针对性与可靠性^[4]。 其次,利用误差分析的方法,混凝土钻芯测试还要选择 混凝土结构中受力较小的位置,有着较强的代表性,体 现混凝土结构的实际状况,完成真实的混凝土强度反馈。 最后,工作人员在钻芯操作过程中综合分析混凝土内部 的钢筋分布情况,避免主筋位置的采样,保证钻芯的科 学性和准确性。

4.2 开展现场取芯试验

在公路施工过程中,桥梁工程的混凝土强度要求较高,现场取芯试验过程中需要完成15个芯样以上的试验,呈现完整的数据信息。根据强度试验的具体要求,规范试验方案,确定取芯位置、数量与直径大小,每次取芯不少于3个,检查设备状态,合理运用钻芯机、锚杆、钢筋探测仪等。在做好准备工作后,与施工方确认取芯的具体位置,固定钻机,保证钻头与混凝土表面垂直,启动钻机的同时打开冷却水阀,当钻到合适深度的时候,完整取出芯样后清洗干净。

4.3 完成抗拉强度试验

在劈裂抗拉强度试验过程中,工作人员根据混凝土 劈裂情况,综合分析混凝土与钢筋材料的粘结强度,作 为准确判断的标准与重要依据。首先,在抗拉强度试验 操作过程中,工作人员要明确试验结果的准确性,对混 凝土构件进行养护,运输到试验室中,清理混凝土构件 保证表面干净无灰尘; 其次, 放置混凝土构件, 注意 放置的具体位置,位于压板中间,保证混凝土构件与劈 裂面垂直, 进而启动试验设备, 如果所测试的混凝土强 度低于C30,工作人员要适当增加荷载,如果高于C30 应综合把握荷载情况,避免出现荷载压力较大,导致抗 压强度测试不准确的情况,通常情况下每次增加的荷载 不能超过 0.05MPa, 根据实际情况适当调节, 保证荷载 值的准确性与合理性。特殊情况下如果混凝土构件的强 度超过 C60, 那么每次增加的荷载值也要提升, 不能低 于 0.10MPa。最后,在抗压强度试验过程中容易出现混 凝土构件损坏的情况,工作人员要适当的调整,记录具 体的数值范围,进而完成公路混凝土劈裂抗拉数值的计 算与分析,呈现完整的抗拉数据。

4.4 规范抗压强度试验

抗压强度试验主要是对公路施工混凝土的强度等 级进行综合分析, 规范具体的试验流程, 首先, 选择混 凝土构件, 观察混凝土构件的外观特征, 除了构件的清 洁与保养, 还要综合考虑混凝土构件的倾斜度, 符合工 程施工的标准和要求,确保混凝土构件平面平行,通常 情况下要求倾斜度低于 0.5, 保证工程的有序建设[5]。 最后,混凝土构件的利用还要综合考虑具体位置,放置 到球座上部,结合混凝土构件的强度状况,如果强度低 于 C30, 要合理把控荷载量,调节荷载增加速度,主要 控制在 0.3~0.5MPa/S 范围内,如果构件的强度大于 C60, 荷载速度控制在 0.5~0.8MPa/S 范围内, 达到最 佳试验状态。最后, 抗压强度试验的整体难度较大, 还 要完成各项试验数据的分析, 记录更多信息, 综合分析 混凝土变形情况,工作人员要从整体层面出发,汇总混 凝土抗压强度的试验数据,有效判断混凝土强度等级。 同时,混凝土构件的抗压强度试验过程中分析具体的质 量问题, 采取科学合理的改进措施, 保证混凝土材料的 准确运用, 支持公路施工混凝土结构的稳定性发展。

5 结语

综上所述,在公路工程建设与施工过程中,综合考虑工程项目的建设要求,合理选择混凝土材料,开展混凝土材料的强度把控,做好试验与分析工作,根据混凝土强度的影响因素进行数据判断,详细探究混凝土强度的试验方法,提高公路施工效率与质量。

参考文献

- [1]赵军成. 公路工程水泥混凝土强度检测与评定分析 [J]. 科技风, 2021 (22). 166-168.
- [2]刘美春. 公路工程高强度水泥混凝土配合比试验检测要点研究[J]. 运输经理世界,2021(23):36-38.
- [3]孙海彬. 公路工程施工过程中混凝土强度试验分析
- [J]. 运输经理世界,2023(12):44-46.
- [4] 史兴波. 试论公路工程水泥混凝土强度检测与评定
- [J]. 四川水泥, 2021(7). 188-189.
- [5]陈新星,郭景秀,黄婧,等.掺钢渣-矿渣-粉煤灰复合微粉混凝土冻融循环后抗压强度数学分析[J]. 科学技术创新,2022(25):122-125.